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Abstract

A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four eigen-
vectors are pure shear modes with no coupling to the pore-fluid mechanics. The remaining two
eigenvectors are linear combinations of pure compression and uniaxial shear, both of which are
coupled to the fluid mechanics. After reducing the problem to a 2 × 2 system, the analysis
shows in a relatively elementary fashion how a poroelastic system with isotropic solid elastic
frame, but with anisotropy introduced through the poroelastic coefficients, interacts with the
mechanics of the pore fluid and produces shear dependence on fluid properties in the overall
poroelastic system. The analysis shows for example that this effect is always present (though
sometimes small in magnitude) in the systems studied, and can be quite large (on the order
of 10 to 20%) for wave propagation studies in some real granites and sandstones, including
Spirit River sandstone and Schuler-Cotton Valley sandstone. Some of the results quoted here
are obtained by using a new product formula relating local bulk and uniaxial shear energy to
the product of the two eigenvalues that are coupled to the fluid mechanics. This product for-
mula was first derived in prior work, but is given a more intuitive derivation here. The results
obtained here are observed to be useful both for explaining difficult to reconcile experimental
data, and for benchmarking of poroelastic codes.

Keywords: porous media, solid-fluid interaction, shear deformation, anisotropic, rock mechanics

1 Introduction

Recent experimental results in ocean sediment acoustics (Williams et al., 2002) tend to show
that there are significant discrepancies between Biot’s theory (Biot, 1962a,b) and measured
poroelastic wave attenuation in the frequency band 2.6-400 kHz. The observed attenuation
shows a different frequency dependence and greater overall reduction in wave amplitude than
that predicted by the theory. A number of plausible alternative theories has been proposed to
reconcile the data but so far none of these effects has been definitively determined to be the
true source of these discrepancies. Similarly, a series of experiments on saturated sedimentary
rocks by Sams et al. (1997) ranging from 30 Hz to 900 kHz has shown that the theory can
be used to fit these seismic, well-logging, and laboratory ultrasonic data. But in order to do
so, Biot’s theory must be supplemented with some additional mechanisms to explain fully the
poroelastic velocity dispersion and wave attenuation observed. Again the data available are not
yet sufficient to help us distinguish with certainty what the precise cause of these significant
variations of the data with frequency might be.

There have been many proposals made that supply physically reasonable mechanisms re-
sulting in greater dispersion and attenuation in field data, but it is beyond our purpose and
scope to review these here. The point to be made instead is that the measured effects are clearly
multiscale phenomena, and they are usually not treated as such [but see Pride et al. (2004) for
one exception]. Biot’s theory is a relatively simple one for the complex systems considered. For
fundamental reasons required to produce such a simple phenomenological theory, Biot neces-
sarily assumes that the medium has constant porosity and is microhomogeneous, linear, usually
isotropic, etc. Virtually all of these fundamental requirements of the theory are often violated
in the earth for the applications of interest. Nevertheless, it is known that ultrasonic data

1



(Plona, 1980) on samples of sintered glass beads — and satisfying all Biot’s assumptions — can
be reconciled with the theory in detail (Chin et al., 1985; Bourbié et al., 1987), including wave
speeds, attenuation, and the predicted existence of a second compressional wave. So, it is the
present author’s working hypothesis that the underlying reason for the observed discrepancies,
in all cases involving earth materials, is heterogeneity, or anisotropy, or some combination of
the two.

In recent papers (Berryman, 2004a,c), the author has addressed the issue of earth hetero-
geneity in this context and shown how a layered earth affects the overall shear modulus of
such a system. An important outcome of this work is a rigorous product formula (given a new
derivation here in an Appendix), valid for any transversely isotropic poroelastic medium, and
showing how the compressional and shear moduli are coupled under undrained conditions. Such
undrained conditions are typically studied in poroelastic wave problems as a proxy for the more
difficult problem of understanding exactly how the system behaves at high frequencies, i.e.,
sufficiently high that the fluid is essentially confined (some authors use the term “unrelaxed” in
this context) during the time of wave passage. We will also study the undrained shear modulus
in the present contribution, but no layering will be assumed — so we may separate out the
contributions of heterogeneity from those of anisotropy. In fact we find that the contributions
from heterogeneity and anisotropy are very similar in these systems. This is due in part, of
course, to the fact that locally layered heterogeneity also leads to effective overall anisotropy.

A brief history of the theory on this topic is this: An important paper by Gassmann (1951)
concerns the effects of fluids on the mechanical properties of porous rock. His main result is
the well-known fluid-substitution formula (that now bears his name) for the bulk modulus in
undrained, isotropic poroelastic media. He also postulated that the effective undrained shear
modulus would (in contrast to the bulk modulus) be independent of the mechanical properties
of the fluid when the medium is isotropic. That the independence of shear modulus from fluid
effects is guaranteed for isotropic media at very low or quasistatic frequencies was shown recently
by Berryman (1999) to be tightly coupled to the original bulk modulus result of Gassmann;
each result implies the other in isotropic media. [Note that a recently discovered product
formula (Berryman, 2004a) suggests that there is also a similarly tight coupling between the
modes for heterogeneous and anisotropic systems, as will be elaborated upon here.] It has
gone mostly without discussion in the literature that Gassmann (1951) also derived general
results for anisotropic porous rocks in the same 1951 paper. It is not hard to see that these
results imply that, contrary to the isotropic case, some of the overall undrained shear moduli
in fact may depend on fluid properties in anisotropic media, thus mimicking the bulk modulus
behavior. However, Gassmann’s paper does not remark at all on this difference in behavior
between isotropic and anisotropic porous rocks. Brown and Korringa (1975) also address the
same class of problems, including both isotropic and anisotropic cases, but again they do not
remark on the shear modulus results in either case. Norris (1993) studies partial saturation in
isotropic layered materials in the low-frequency regime (' 100 Hz) and takes as a fundamental
postulate that Gassmann’s results hold for the low frequency shear modulus, but it seems that
some more justification should be provided for such an assumption, and furthermore some
indication of its range of validity established.

On the other hand, Hudson (1981), in his early work on cracked solids, explicitly demon-
strates differences between fluid-saturated and dry cracks and relates his work to that of Walsh
(1969) and O’Connell and Budiansky (1974), but does not make any connection to the work
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of Gassmann (1951), Biot and Willis (1957), or Brown and Korringa (1975). Mukerji and
Mavko (1994) show numerical results based on work of Gassmann (1951), Brown and Korringa
(1975) and Hudson (1981) demonstrating the fluid dependence of shear in anisotropic rock, but
again they do not remark on these results at all. Mavko and Jizba (1991) use a rather sim-
ple reciprocity argument to establish a direct, but approximate, connection between undrained
shear response and undrained compressional response in rocks containing cracks. Berryman
and Wang (2001) show that deviations from Gassmann’s results sufficient to produce shear
modulus dependence on fluid mechanical properties require the presence of some anisotropy on
the microscale, thereby explicitly violating the microhomogeneous and microisotropy conditions
implicit in Gassmann’s original derivation. Berryman et al. (2002a) go further and make use
of differential effective medium analysis to show explicitly how the undrained, overall isotropic
shear modulus can depend on fluid trapped in penny-shaped cracks. Meanwhile, laboratory
results for wave propagation [see Berryman et al. (2002b)] show conclusively that the shear
modulus does indeed depend on fluid mechanical properties for low-porosity, low-permeability
rocks, and high-frequency laboratory experiments (f > 500 kHz).

One thing lacking from all the preceding work is a simple example showing how the presence
of anisotropy influences the shear modulus, and specifically when and how the shear modulus
becomes fluid dependent. Our main purpose in the present work is therefore to demonstrate,
in a set of quite simple examples, how the overall shear behavior becomes coupled to fluid
compressional properties at high frequencies in anisotropic media — even though overall shear
modulus is always independent of the fluid properties in microhomogeneous isotropic media
at sufficiently low frequencies, whether drained or undrained. Two other distinct but related
analyses addressing this topic have been presented recently by the author (Berryman, 2004a,c).
Both of these prior papers have made explicit use of layered media, composed of isotropic
poroelastic materials, together with exact results for such media based on low frequency, long
wavelength Backus averaging (Backus, 1962). In contrast, the present analysis does not make
use of such a specific model, and is therefore believed to be about as simple as possible, while
still achieving the level of understanding desired for this rather subtle technical issue. One
important simplification we make here in order to separate the part that is due to poroelastic
effects from the part that would be present in any elastic (i.e., possibly zero permeability
porous medium) is to model each material as if the elastic part is entirely isotropic, while the
poroelastic effects [i.e., the effective stress or Biot-Willis coefficients (Biot and Willis, 1957) for
the anisotropic overall material] provide the only sources of anisotropy in the system. Thus, we
specifically distinguish two possible sources of anisotropy, the elastic or “hard” anisotropy that
is assumed not to be present here, and the poroelastic or “soft” anisotropy that is the source
of the effects we want to study in this paper.

Our analysis for general transversely isotropic media is presented in Sections 2–4. To be
specific, Section 4 also introduces the effective undrained shear modulus relevant to our general
discussion. Examples are presented for glass, granite, and two sandstones in Section 5. The
paper’s results and conclusions are summarized in the final section. Some mathematical details
are collected in two Appendices. In particular, a new derivation of the product formula that is
key to our analysis is presented in Appendix B.

3



2 Fluid-Saturated Poroelastic Rocks

In contrast to traditional elastic analysis, the presence in rock of a saturating pore fluid in-
troduces the possibility of an additional control field and an additional type of strain variable.
The pressure pf in the fluid is a new field parameter that can be controlled. Allowing sufficient
time for global pressure equilibration permits us to consider pf to be a constant throughout
the percolating (connected) pore fluid, while restricting the analysis to quasistatic processes.
(But ultimately we are not interested in such quasi-static processes in this paper, as we are
trying to reconcile laboratory wave data with the theory.) The change ζ in the amount of fluid
mass contained in the pores [see Biot (1962) or Berryman and Thigpen (1985)] is a new type
of strain variable, measuring how much of the original fluid in the pores is squeezed out during
the compression of the pore volume while including the effects of compression or expansion of
the pore fluid itself due to changes in pf . It is most convenient to write the resulting equations
in terms of compliances rather than stiffnesses, so the basic equation to be considered takes the
following form for isotropic media:









e11
e22
e33
−ζ









=









s11 s12 s12 −β
s12 s11 s12 −β
s12 s12 s11 −β
−β −β −β γ

















σ11

σ22

σ33

−pf









. (1)

The constants appearing in the matrix on the right hand side will be defined in the following
two paragraphs. It is important to write the equations this way rather than using the inverse
relation in terms of the stiffnesses, because the compliances sij appearing in (1) are simply
related to the drained elastic constants λdr and Gdr in the same way they are related in normal
elasticity, whereas the individual stiffnesses obtained by inverting the equation in (1) must
contain coupling terms through the parameters β and γ that depend on the pore and fluid
compliances. Thus, we find that

s11 =
1

Edr

=
λdr +Gdr

Gdr(3λdr + 2Gdr)
(2)

and

s12 = − νdr

Edr

, (3)

where the drained Young’s modulus Edr is defined by the second equality of (2) and the drained
Poisson’s ratio is determined by

νdr =
λdr

2(λdr +Gdr)
. (4)

When the external stress is hydrostatic so σ = σ11 = σ22 = σ33, equation (1) telescopes
down to

(

e
−ζ

)

=

(

1/Kdr −α/Kdr

−α/Kdr α/BKdr

)(

σ
−pf

)

, (5)

where e = e11 + e22 + e33, Kdr = λdr + 2

3
Gdr is the drained bulk modulus, α = 1 −Kdr/Km

is the Biot-Willis parameter (Biot and Willis, 1957) with Km being the bulk modulus of the
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solid minerals present, and Skempton’s pore-pressure buildup parameter B (Skempton, 1954)
is given by

B =
1

1 +Kp(1/Kf − 1/Km)
. (6)

New parameters appearing in (6) are the bulk modulus of the pore fluid Kf and the pore
modulusK−1

p = α/φKdr where φ is the porosity. The expressions for α andB can be generalized
slightly by supposing that the solid frame is composed of more than one constituent, in which
case the Km appearing in the definition of α is replaced by Ks and the Km appearing explicitly
in (6) is replaced by Kφ (see Brown and Korringa, 1975; Rice and Cleary, 1976; Berryman and
Wang, 1995). This is an important additional complication (Berge and Berryman, 1995), but
— for the sake of desired simplicity — we will not pursue the matter further here.

Comparing (1) and (5), we find that

β =
α

3Kdr

(7)

and

γ =
α

BKdr

. (8)

As we develop the ideas to be presented here, we will need to treat Eqs. (1)–(6) as if they
are true locally, but perhaps not globally. In particular, if we assume overall drained conditions,
then pf = a constant everywhere. But, if we assume locally undrained conditions, then pf '
a constant in local patches, but these local constant values may differ from patch to patch.
This way of thinking about the system is intended to mimic the behavior expected when a high
frequency wave propagates through a system having highly variable (or just uniformly very
low) fluid permeability everywhere.

3 Relations for Anisotropy in Poroelastic Materials

Gassmann (1951), Brown and Korringa (1975), and others have considered the problem of
obtaining effective constants for anisotropic poroelastic materials when the pore fluid is confined
within the pores. The confinement condition amounts to a constraint that the increment of
fluid content ζ = 0, while the external loading σ is changed and the pore-fluid pressure pf is
allowed to respond as necessary and thus equilibrate.

To provide an elementary derivation of the Gassmann equation for anisotropic materials,
we consider the anisotropic generalization of (1)









e11
e22
e33
−ζ









=









s11 s12 s13 −β1

s12 s22 s23 −β2

s13 s23 s33 −β3

−β1 −β2 −β3 γ

















σ11

σ22

σ33

−pf









. (9)

Three shear contributions have been excluded from consideration since they can easily be shown
not to interact mechanically with the fluid effects. This form is not completely general in that
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it includes orthorhombic, cubic, hexagonal, and all isotropic systems, but excludes triclinic,
monoclinic, trigonal, and some tetragonal systems that would have some nonzero off-diagonal
terms in the full elastic matrix. Also, we have assumed that the material axes are aligned with
the spatial axes. But this latter assumption is not significant for the derivation that follows.
Such an assumption is important when properties of laminated materials having arbitrary
orientation relative to the spatial axes need to be considered, but we do not treat this more
general problem here.

If the fluid is confined (or undrained on the time scales of interest), then ζ ≡ 0 in (9) and
pf becomes a linear function of σ11, σ22, σ33. Eliminating pf from the resulting equations,
we obtain the general expression for the strain dependence on external stress under confined
conditions:





e11
e22
e33



 =









s11 s12 s13
s12 s22 s23
s13 s23 s33



− γ−1





β1

β2

β3



 ( β1 β2 β3 )









σ11

σ22

σ33





≡




s∗11 s∗12 s∗13
s∗12 s∗22 s∗23
s∗13 s∗23 s∗33









σ11

σ22

σ33



 . (10)

The sij’s are fluid-drained constants, while the s∗ij’s are the fluid-undrained (or fluid-confined)
constants.

The fundamental result (10) was obtained earlier by both Gassmann (1951) and Brown and
Korringa (1975), and may be written simply as

s∗ij = sij −
βiβj

γ
, for i, j = 1, 2, 3. (11)

This expression is just the anisotropic generalization of the well-known Gassmann equation for
isotropic, microhomogeneous porous media.

4 Eigenvectors for Transverse Isotropy

The 3 × 3 system (10) can be analyzed fairly easily, and in particular the eigenfunctions and
eigenvalues of this system can be obtained in general. However, such general results do not
provide much physical insight into the problem we are trying to study, so instead of proceeding
in this direction we will now restrict attention to transversely isotropic materials. This case
is relevant to many layered earth materials and also industrial systems, and it is convenient
because we can immediately eliminate one of the eigenvectors from further consideration. Three
mutually orthogonal (but unnormalized) vectors of interest are:

v1 =





1
1
1



 , v2 =





1
−1
0



 , v3 =





1
1
−2



 . (12)

Treating these vectors as stresses, the first corresponds to a simple hydrostatic stress, the second
to a planar shear stress, and the third to a pure shear stress applied uniaxially along the z-axis
(which would also be the symmetry axis for a layered system, but we are not treating such
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layered systems here). Transverse isotropy of the layered system requires: s11 = s22, s13 = s23,
and for the poroelastic problem β1 = β2. Thus, it is immediately apparent that the planar
shear stress v2 is an eigenvector of the system, and furthermore it results in no contribution
from the pore fluid. Therefore, this vector will be of no further interest here, and the system
can thereby be reduced to 2 × 2.

4.1 Compliance formulation

If we define the effective compliance matrix for the system as S∗ having the matrix elements
given in (11), then the bulk modulus for this system is defined in terms of v1 by

1

Ku

= vT
1 S

∗v1 =
1

Kdr

− γ−1 (2β1 + β3)
2 , (13)

where the T superscript indicates the transpose, and 1/Kdr ≡ ∑

3
i,j=1 sij. This is the result

usually quoted as Gassmann’s equation for the bulk modulus of the undrained (or confined)
anisotropic (VTI) system. Also, note that in general

3
∑

i=1

βi = 2β1 + β3 = α/Kdr . (14)

Thus, even though v1 is not an eigenvector of this system, it nevertheless plays a fundamental
role in the mechanics. Furthermore, this role is quite well-understood. What is perhaps not as
well-understood then, especially for poroelastic systems, is the role of v3. Understanding this
role will be one main focus for the remainder of this discussion.

The true eigenvectors of the subproblem of interest (i.e., in the space orthogonal to the four
pure shear eigenvectors already discussed) are necessarily linear combinations of v1 and v3. We
can construct the relevant contracted operator for the 2 × 2 subsystem by considering:

(

vT
1

vT
3

)

S∗
(

v1 v3
)

≡
(

9A∗
11 18A∗

13

18A∗
13 36A∗

33

)

(15)

(in all cases the ∗ superscripts indicate that the pore-fluid effects are included) and the reduced
matrix

Σ∗ = A∗

11v1v
T
1 +A∗

13(v1v
T
3 + v3v

T
1 ) +A∗

33v3v
T
3 , (16)

where

A∗

11 = [2(s∗11 + s∗12 + 2s∗13) + s∗33]/9,

A∗

13 = (s∗11 + s∗12 − s∗13 − s∗33)/9, (17)

A∗

33 = (s∗11 + s∗12 − 4s∗13 + 2s∗33)/18.

Providing some understanding of these connections and the implications for shear modulus
dependence on fluid content is one of our goals.

First we remark that A∗
11 = 1/9Ku, where Ku is again the undrained (or Gassmann) bulk

modulus for the system in (13). Therefore, A∗
11 is proportional to the undrained bulk compliance
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of this system. The other two matrix elements cannot be given such simple interpretations in
general. To simplify the analysis we note that, at least for purposes of modeling, anisotropy of
the compliances sij and the poroelastic coefficients βi can be treated independently. Anisotropy
displayed in the sij’s corresponds mostly to the anisotropy in the solid elastic components of
the system, while anisotropy in the βi’s corresponds mostly to anisotropy in the shapes and
spatial distribution of the porosity. We will therefore distinguish these contributions by calling
anisotropy appearing in the sij’s the “hard anisotropy,” and the anisotropy in the βi’s will in
contrast be called the “soft anisotropy.”

Now, it is clear (also see the discussion in Appendix A for more details) that the eigenvectors
having unit magnitude f(θ) for this problem (i.e., for the reduced operator Σ∗) necessarily take
the form

f(θ) = v1 cos θ + v3 sin θ, (18)

where v1 = v1/
√

3 and v3 = v3/
√

6 are the normalized basis vectors. The 2 × 2 system must
have two eigenvectors, corresponding two angles we label θ+ and θ− (for the ± signs appearing
in the quadratic forms that appear in the eigenvalue formulas). Furthermore, the orthogonality
condition for the eigenvectors is

0 = fT (θ+)f(θ−) = cos θ+ cos θ− + sin θ+ sin θ− = cos(θ+ − θ−), (19)

which implies that the difference θ+ − θ− = ±π/2. The two solutions for the rotation angle,
when chosen appropriately, may therefore be related by: θ+ and θ− = θ+ + π

2
. It is easily seen

that the eigenvalues are given by

Λ∗

± = 3

[

A∗

33 +A∗

11/2 ±
√

(A∗
33 −A∗

11/2)
2 + 2(A∗

13)
2

]

(20)

and the rotation angles are determined by

tan θ∗± =
Λ∗
±/3 −A∗

11√
2A∗

13

=

[

A∗

33 −A∗

11/2 ±
√

(A∗
33 −A∗

11/2)
2 + 2(A∗

13)
2

]

/
√

2A∗

13. (21)

One part of the rotation angle is due to the drained (fluid free) “hard anisotropic” nature of the
rock frame material. We will call this part θ̄. The remainder is due to the presence of the fluid
in the pores, and we will call this part δθ ≡ θ∗ − θ̄ for the “soft anisotropy.” Using a standard
formula for tangents, we have

δθ± = tan−1

[

tan θ∗± − tan θ̄±

1 + tan θ∗± tan θ̄±

]

. (22)

Furthermore, definite formulas for θ̄± are found from (21) by taking γ → ∞ (corresponding to
air saturation of the pores).

Since (19) implies that

tan θ∗+ · tan θ∗− = −1, (23)

it is sufficient to consider just one of the signs in front of the radical in (21). The most
convenient choice for analytical purposes turns out to be the minus sign (which corresponds to
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the eigenvector with the larger component of pure compression). Furthermore, it is also clear
from the form of (21) that often the behavior of most interest to us here occurs for cases when
A∗

13 6= 0.
In the limit of a nearly isotropic solid frame (so the “hard anisotropy” vanishes and thus

we will also call this the “quasi-isotropic” limit), it is not hard to see that

A∗

33 ' 1

12Gdr

− (β1 − β3)
2

9γ
, (24)

where Gdr is the drained shear modulus of the quasi-isotropic solid frame. Similarly, the
remaining coefficient

A∗

13 ' −(β1 − β3)(2β1 + β3)

9γ
, (25)

since all the solid contributions approximately cancel in this limit.
To clarify the situation further, we will enumerate three cases:

4.1.1 Case I. A∗
33 −A∗

11/2 6= 0, A∗
13 = 0.

Whenever A∗
33 −A∗

11/2 6= 0 and A∗
13 → 0, we find easily that θ∗− → 0, while θ∗+ → π/2. In this

case, v1 and v3 are themselves the eigenvectors, while the eigenvalues are proportional to A∗
11

and A∗
33. In the quasi-isotropic limit, A∗

13 can vanish only if β1 −β3 = 0, in which case A∗
33 also

does not depend on fluid properties. For media differing significantly from the quasi-isotropic
limit, A∗

13 could vanish for some physically interesting situations, but the resulting physical
constraints are too special (and complicated) for us to consider them further here.

4.1.2 Case II. A∗
33 −A∗

11/2 = 0, A∗
13 6= 0.

For this case, tan θ∗± = ±1, so θ∗± = ±π/4. The two eigenvectors are v1/
√

6 ± v3/
√

12, with no
dependence on the fluid properties. However, the eigenvalues continue to be functions of the
fluid properties. This seems to be a rather special case, but again considering the quasi-isotropic
limit, we find that A∗

33 −A∗
11/2 ' ν/2E + [(2β1 + β3)

2 − 2(β1 − β3)
2]/18γ, where ν is Poisson’s

ratio and E is Young’s modulus. For this combination of the parameters to vanish for special
values does not appear to violate any of the well-known constraints (such as positivity, etc.) on
these parameters. For example, if β1 = 0, the term depending on the fluid properties clearly
makes a negative contribution, which might be large enough to cancel the contribution from
the solid. But, for now, this case seems rather artificial, so we will not consider it further here.

4.1.3 Case III. A∗
33 −A∗

11/2 6= 0, A∗
13 6= 0.

This case is the most general one of the three, and the one we will study at greater length in
the remainder of this discussion.

We want to understand how the introduction of liquid into the pore space affects the shear
modulus. We also want to know how the anisotropy influences, i.e., aids or hinders, the impact
of the liquid on the shear behavior. To achieve this understanding, it should be sufficient to

9



consider the case when (A∗
13)

2 � (A∗
33 − A∗

11/2)
2, assuming as we do that both factors are

nonzero. Then, expanding the square root in (20), we have

Λ∗

+ = 6A∗

33 + ∆ and Λ∗

− = 3A∗

11 − ∆, (26)

where ∆ is defined consistently by either of the two preceeding expressions or by 2∆ ≡ Λ∗
+ −

Λ∗
− + 3A11 − 6A33 and is also given approximately for cases of interest here by

∆ ' 3(A∗
13)

2

A∗
33 −A∗

11/2
. (27)

In the quasi-isotropic soft anisotropy limit under consideration, we find

∆ ' 2(β1 − β3)
2(2β1 + β3)

2/27γ2

ν/E + [(2β1 + β3)2 − 2(β1 − β3)2]/9γ
. (28)

All of the mechanical effects of the liquid that contribute to this formula appear in the factor
γ. The order at which γ appears depends on the relative importance of the two terms in the
denominator of this expression. If the second term ever dominates, then one factor of γ cancels,
and therefore ∆ ∼ O(γ−1), and furthermore ∆ ∼ 2(β1 − β3)

2/3γ if |β1 − β3| << |2β1 + β3|. If
instead what seems to be the more likely situation holds and the first term in the denominator
dominates, then ∆ ∼ O(γ−2). So in either of these cases, as long as β1 − β3 6= 0 (which is
the condition for soft anisotropy), we always have contributions to ∆ from liquid mechanical
effects. There do not appear to be any combinations of the parameters for which the fluid
effects disappear whenever the material is in the class of anisotropic solids considered here.

4.2 Stiffness formulation

The dual to the problem just studied replaces compliances everywhere with stiffnesses, and
then proceeds as before. Equations (15)–(18) are replaced by

(

vT
1

vT
3

)

C∗
(

v1 v3
)

≡
(

9B∗
11 18B∗

13

18B∗
13 36B∗

33

)

(29)

(in all cases the ∗ superscripts indicate that the pore-fluid effects are included) and the reduced
matrix

(Σ∗)−1 = B∗

11v1v
T
1 +B∗

13(v1v
T
3 + v3v

T
1 ) +B∗

33v3v
T
3 , (30)

where

B∗

11 = [2(c∗11 + c∗12 + 2c∗13) + c∗33]/9,

B∗

13 = (c∗11 + c∗12 − c∗13 − c∗33)/9, (31)

B∗

33 = (c∗11 + c∗12 − 4c∗13 + 2c∗33)/18.

It is a straightforward exercise to check that the two reduced problems are in fact inverses of
each other. We will not repeat this analysis here, as it is wholly repetitive of what has gone
before. The main difference in the details is that the expressions for the B’s in terms of the β’s
are rather more complicated than those for the compliance version, which is also why we chose
to display the compliance formulation instead.
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4.3 Effective and undrained shear moduli Geff and Gu

Four shear moduli are easily defined for the anisotropic system under study. Furthermore,
since we are treating only soft anisotropy, all of these moduli are the same, i.e., Gi = Gdr for
i = 1, . . . , 4. These moduli are related to the four shear eigenvalues/eigenvectors of the system,
and they do not couple to the pore-fluid mechanics. But, the eigenvectors in the reduced
2 × 2 system studied here are usually mixed in character, being quasi-compressional or quasi-
shear modes. It is therefore somewhat problematic to find a proper definition for a fifth shear
modulus. The author has analyzed this problem previously (Berryman, 2004b), and concluded
that a sensible (though approximate) definition can be made using G5 = Geff . There are
several different ways of arriving at the same result, but for the present analysis the most useful
of these is to express Geff in terms of the product Λ+Λ− (the eigenvalue product, which is
also the determinant of the 2 × 2 compliance system). This result is given a new derivation in
Appendix B, and for our present application states that the product formula is

1

3Ku

· 1

2Geff

≡ Λ+Λ− = 18
[

A∗

11A
∗

33 − (A∗

13)
2
]

, (32)

which we take as the definition of Geff here. And, since A∗
11 = 1/9Ku, we have

1

Geff

= 12
[

A∗

33 − (A∗

13)
2/A∗

11

]

. (33)

To obtain one possible choice for an estimate of the isotropic average overall undrained shear
modulus, we next take the arithmetic mean of these five shear compliances:

1

Gu

≡ 1

5

5
∑

i=1

1

Gi

. (34)

Combining these definitions and results gives:

1

Gu

− 1

Gdr

= − 4

15

(β′1 − β′3)
2

1 − αB

αB

Kdr

=
4

15

(β′1 − β′3)
2

1 − αB

[

1

Ku

− 1

Kdr

]

, (35)

where the β′s are defined by β′i = βiKdr/α. The final equality is presented to emphasize the
similarity of the present results to those of both Mavko and Jizba (1991) and Berryman et al.

(2002b). Setting β′1 = 0, β′3 = 1, B = 1, and α ' 0 recovers the form of Mavko and Jizba (1991)
for the case of a very dilute system of flat cracks. The Mavko-Jizba form was used successfully
by Sams et al. (1997) while reconciling their high frequency data with the theory.

Note that (34) takes the form of a Reuss-type average (harmonic mean, and lower bound)
of the undrained shear modulus. Also note that, contrary to (34), the definition (33) of Geff is
actually based instead on the Voigt average. In terms of mathematical precision, the result (35)
therefore cannot be considered strictly rigorous; it is neither an upper nor a lower bound. A
partial justification for the formula comes not from absolute rigor, but instead from observations
(some of which are presented in the next section) that Geff is in fact a very close estimate of
the energy per unit volume in the fifth shear mode (though still an upper bound). So, for these
reasons, the result (35) should be viewed, not as a rigorous formula (it is not), but as a good
physical estimate of the undrained shear modulus. Berryman et al. (2002b) show that the
Mavko and Jizba (1991) results suffer from the same lack of rigor.
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For applications in which rigor is demanded, we should instead use the Voigt average

Gu ≡ 1

5

∑

i

Gi, (36)

as our estimate of the effective undrained shear modulus. Berryman (2004a) shows that this
choice is often a very accurate estimate, although strictly speaking it should still be viewed as
an upper bound on the overall modulus for a random, heterogeneous, anisotropic system.

5 Examples and Discussion

It is clear from (26) that fluid effects in ∆ cannot increase the overall compliance eigenvalues
simultaneously for both the quasi-bulk and the quasi-shear modes. Rather, if one increases,
the other must decrease. Furthermore, it is certainly always true that the presence of pore
liquid either has no effect or else strengthens (i.e., stiffens) the porous medium in compression.
But this effect on the bulk modulus has been at least partially accounted for in A∗

11 = 1/9K∗

through the original contribution derived by Gassmann (1951). So presumably the contribution
of ∆ to compliance cannot be so large as to negate completely the liquid effects on the undrained
bulk modulus.

5.1 Examples

To clarify the situation, we show some examples in Figures 1–8. The details of the analysis
that produces these constant energy ellipses are summarized in Appendix A. The main point
is that, for the compliance version of the analysis, the contours of constant energy are ellipses
when the vector f in (18) is interpreted as a stress. Analogously, when the vector is treated as a
strain, the contours of constant energy are ellipses for the dual (or stiffness) formulation. If we
choose to think of these figures as diagrams in the complex plane, then we note that — while
circles and lines transform to circles and lines when transforming back and forth between these
two planes — the shapes of ellipses are not preserved (except, of course, in the special case –
which is precisely that of isotropy – when the ellipses degenerate to circles). Eigenvectors are
determined by the directions in which the points of contact of these two curves lie (indicated
by red circles).

Figures 1 and 2 present an example based on a glassy material. Typical values for the bulk
and shear moduli of glass were used: Km = 46.3 GPa and Gm = 30.5 GPa, respectively. The
value of the Biot-Willis coefficient was arbitrarily chosen as α = 0.6, so Kdr = 18.52 GPa.
Taking Poisson’s ratio as νdr = 0.2, we have Gdr = 13.89 GPa. Skempton’s coefficient was
chosen for simplicity to be B ≡ 1 in this and all the other examples as well. (This choice
is extreme because it implies that Ku = Km. But, since our interest here is in analysis of
the undrained shear modulus, the study of this limit is particularly useful to us.) The most
anisotropic choices of β1 and β3 were used that would not produce absurd (negative) values of
the diagonal coefficients for either s∗ij or c∗ij, and that also would not produce Gu > Gm. [Gu

determined by (33) amd (34) is a type of upper bound – actually the Voigt average. Values of
this bound that might exceed Gm need not be considered.] For glass, these values were found
to be β1 = 0.15α/Kdr and β3 = 0.70α/Kdr . The value of the energy used for normalization

12



was U = 900.0 GPa. Computed values for the effective and undrained shear moduli were
Geff = 25.43 GPa and Gu = 15.28 GPa.

For the remaining three sets of examples, the values used for the moduli of the samples are
taken from results contained in Berryman (2004a), wherein it was shown how certain labora-
tory data could be fit using an elastic differential effective medium scheme. These results are
summarized in the Table.

Figures 3 and 4 present results for Sierra White granite. Laboratory data on this material
were presented by Murphy (1982). The values chosen for β1 and β3 were β1 = 0.05α/Kdr

and β3 = 0.90α/Kdr . The value of the energy used for normalization was U ' 900.0 GPa.
Computed values for the effective and undrained shear moduli were Geff = 39.8 GPa and
Gu = 28.3 GPa.

Figures 5 and 6 present results for Schuler-Cotton Valley sandstone. Laboratory data on
this material were also presented by Murphy (1982). The values chosen for β1 and β3 were
β1 = 0.20α/Kdr and β3 = 0.60α/Kdr . The value of the energy used for normalization was U '
900.0 GPa. Computed values for the effective and undrained shear moduli were Geff = 35.8
GPa and Gu = 17.7 GPa.

Figures 7 and 8 present results for Spirit River sandstone. Laboratory data on this material
were presented by Knight and Nolen-Hoeksema (1990). The values chosen for β1 and β3 were
β1 = 0.25α/Kdr and β3 = 0.50α/Kdr . The value of the energy used for normalization was U '
900.0 GPa. Computed values for the effective and undrained shear moduli were Geff = 20.11
GPa and Gu = 12.41 GPa.

5.2 Discussion

We can compare the results obtained with results obtained for the same rocks using differential
effective medium theory to fit data. The two characteristics that will interest us here are:
(1) comparisons between the values chosen in our examples for the anisotropic β′s and the
best fitting crack aspect ratios found in Berryman (2004a), and (2) comparisons between the
magnitudes of changes in the overall shear moduli from their drained to undrained values.

The preferred crack aspect ratios found for Sierra White granite, Schuler-Cotton Valley
sandstone, and Spirit River sandstone in Berryman (2004a) were respectively, 0.005, 0.015,
and 0.0125. Here we found that (β′1,β

′
3) for the same samples were, respectively, (0.05,0.90),

(0.20,0.60), and (0.25,0.50). Clearly, these values are at least weakly correlated with those
of the aspect ratios for the same samples, but no stronger conclusions can be reached at the
present time concerning these values.

Similarly, the comparisons of the changes in shear modulus magnitude from drained to
undrained also show a weak correlation. The increases in shear moduli observed in the measured
laboratory data for Sierra White granite, Schuler-Cotton Valley sandstone, and Spirit River
sandstone are, respectively, about 10%, 10%, and 20%. As seen in the Table, the magnitude of
the changes predicted here is essentially about 10% in all three of these cases. Thus, agreement
is good both qualitatively and semi-quantitatively in all cases. We conclude that the theory
presented here is correctly predicting the magnitudes of these shear modulus enhancements due
to pore-fluid effects.
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6 Summary and Conclusions

The preceding discussion shows how overall shear modulus dependence on pore-fluid mechanics
arises in simple anisotropic (the specific example used was transversely isotropic) media. The
results — both the product formula derived previously by the author and the new formulas such
as (35) — demonstrate in an entirely elementary fashion how compression-to-shear coupling
enters the analysis for anisotropic materials, and furthermore how this coupling leads to overall
shear dependence on mechanics of fluids in the pore system.

These effects need not always be large. However, the effect can be very substantial (on the
order of a 10% to 20% increase in the overall shear modulus) in cracked or fractured materials,
when these pores are liquid-filled. The anisotropy and liquid stiffening effects then both come
strongly into play in the results we see, such as those illustrated in Figures 1–8. In particular, if
β1 ' β3, then soft anisotropy does not make a significant contribution. But, if either β1 << β3

or β1 >> β3, then the contribution can be significant.
The results presented here are expected to be useful in reconciling high frequency shear

wave data with the poroelastic theory and also as a tool for benchmarking of poroelastic codes
for complex, heterogeneous earth systems such as reservoirs.
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Appendix A – Energy Ellipses

The equation of an ellipse centered at the origin whose semi-major and semi-minor axes are of
lengths a and b and whose angle of rotation with respect to the x-axis in the (x, y)-plane is ψ
is given by

(x cosψ + y sinψ)2/a2 + (−x sinψ + y cosψ)2/b2 = 1. (37)

For comparison, when x = r cos θ, y = r sin θ, and a stress of magnitude r =
√

x2 + y2 is applied
to a poroelastic system, the energy stored in the anisotropic media of interest here [using (16)
and (18)] is given by

r2fT (θ)Σ∗f(θ) ≡ U(r, θ) =

3r2
[

A11 cos2 θ + 2
√

2A13 cos θ sin θ + 2A33 sin2 θ
]

= R2U(r0, θ). (38)

In the second equation R ≡ r/r0, and r0 in an arbitrary number (say unity) having the di-
mensions of stress (i.e., dimensions of Pa). It is not hard to see that, when U(r, θ) = const,
the two equations (37) and (38) have the same functional form and, therefore, that contours
of constant energy in the complex (z = x + iy) plane are ellipses. Furthermore, we can solve
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for the parameters of the ellipse by setting U = 1 (in arbitrary units for now) in (38) and then
factoring r2 out of both equations. We find that

3A11 =
cos2 ψ

a2
+

sin2 ψ

b2
,

6
√

2A13 = sin 2ψ

(

1

a2
− 1

b2

)

, (39)

6A33 =
sin2 ψ

a2
+

cos2 ψ

b2
.

These three equations can be inverted for the parameters of the ellipse, giving:

1

a2
=

3A11 cos2 ψ − 6A33 sin2 ψ

cos 2ψ
,

1

b2
= −3A11 sin2 ψ − 6A33 cos2 ψ

cos 2ψ
, (40)

tan 2ψ =
2
√

2A13

A11 − 2A33

.

Although contours of constant energy are of some interest, it is probably more useful to our
intuition for the poroelastic application to think instead about contours associated with applied
stresses and strains of unit magnitude, i.e., for r = 1 (in appropriate units) and θ varying from 0
to π [again see definition (18)]. We then have the important function U(1, θ). [Note that, when
θ varies instead between π and 2π, we just get a copy of the behavior for θ between 0 and π. The
only difference is that the stress and strain vectors have an overall minus sign relative to those
on the other half-circle. For a linear system, such an overall phase factor of unit magnitude
is irrelevant to the mechanics of the problem.] Then, if we set U(r, θ) = const = R2U(r0, θ)
and plot z = Reiθ in the complex plane, we will have a plot of the ellipse of interest with R
determined analytically by

R =
√

U(r, θ)/U(r0, θ) =
√

const/U(r0, θ). (41)

We call R the magnitude of the normalized stress (i.e., normalized with respect to r0).
The analysis just outlined can then be repeated for the stiffness matrix and applied strain

vectors. The mathematics is completely analogous to the case already discussed, so we will not
repeat it here. Since strain is already a dimensionless quantity, the factor that plays the same
role as r0 above can in this case be chosen to be unity if desired, as the main purpose of the
factor r0 above was to keep track of the dimensions of the stress components.

Appendix B – Proof of the Product Formula

The product formula (32) was first presented in Berryman (2004a), where a couple of derivations
of this formula were also given. A new derivation is provided here.

Using the definitions of unit trial vector f and reduced (i.e., 2×2) compliance matrix Σ∗ from
Eqs. (18) and (16), we can immediately write the eigenvalue (or singular value) decomposition
of the matrix Σ∗ in terms of its eigenvectors and eigenvalues f(θ±) and Λ±. The result is

Σ∗ = f(θ+)Λ+f
T (θ+) + f(θ−)Λ−f

T (θ−). (42)
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The reduced stiffness matrix is just the inverse of Σ∗, and so is represented similarly by

(Σ∗)−1 = f(θ+)Λ−1
+ fT (θ+) + f(θ−)Λ−1

− fT (θ−). (43)

The curves in the Figures here can then all be parametrized in terms of polar angle θ by
considering the formulas

fT (θ)Σ∗f(θ) = Λ+ cos2(θ − θ+) + Λ− cos2(θ − θ−) (44)

for compliance, and

fT (θ) (Σ∗)−1 f(θ) = (Λ+)−1 cos2(θ − θ+) + (Λ−)−1 cos2(θ − θ−) (45)

for stiffness.
Then, the undrained bulk modulus of the system Ku = KR is found from (42) to be

(3KR)−1 = vT
1 Σ∗v1 = Λ+ cos2 θ+ + Λ− cos2 θ−. (46)

Similarly, the effective undrained shear modulus Geff by definition is determined from

2Geff = vT
3 (Σ∗)−1 v3 = Λ−1

+ sin2 θ+ + Λ−1
− sin2 θ−. (47)

Taking the ratio of these quantities of interest, we find easily that

1

6KRGeff

=
Λ+ cos2 θ+ + Λ− cos2 θ−

Λ−1
+ sin2 θ+ + Λ−1

− sin2 θ−
= Λ+Λ−, (48)

where the final equality follows directly from the identity

sin2 θ− = sin2

(

θ+ +
π

2

)

= cos2 θ+. (49)

Eq. (48) is a special case of a more general product formula, true for any angle θ, which
follows from the identity

fT (θ)Σ∗f(θ)/
√

Λ+Λ− =

√

Λ+

Λ−

cos2(θ − θ+) +

√

Λ−

Λ+

cos2(θ − θ−)

= fT (θ + π/2) (Σ∗)−1 f(θ + π/2)/
√

Λ−1
+ Λ−1

− (50)

and is straighforward to verify.
Equation (48) is the product formula quoted in equation (32), and first derived in Berryman

(2004a). A geometrical interpretation of the formula is obtained by considering, for example,
Figure 1. A plane rectangle is formed by considering the origin and the two points labeled by
(Λ+)−1 and (Λ−)−1 to be three of the four vertices of this rectangle. The area of this rectangle
is clearly the product (Λ+Λ−)−1. Similarly, the plane rectangle formed in the same way from
the origin and the points labeled 2Geff and 3KR clearly has area 6GeffKR. It is seen in Figure
1 that, at least to graphical accuracy, these two rectangles are practically indistinguishable —
although in fact they are not identical. Formula (48) shows further that the areas of these two
rectangles are always equal. A similar discussion also applies to the inverses of these quantities
as demonstrated in Figure 8.
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Table. Elastic and poroelastic parameters of the three rock samples considered in the text.
Bulk and shear moduli of the grains Km and Gm, bulk and shear moduli of the drained

porous frame Kdr and Gdr, the effective and undrained shear moduli Geff and Gu, and the
Biot-Willis parameter α = 1 −Kdr/Km. The porosity is φ.

Elastic/Poroelastic Sierra White Schuler-Cotton Valley Spirit River

Parameters Granite Sandstone Sandstone

Gm (GPa) 31.7 36.7 69.0

Gu (GPa) 28.3 17.7 12.41

Gdr (GPa) 26.4 15.7 11.33

Geff (GPa) 39.8 35.8 20.11

Km (GPa) 57.7 41.8 30.0

Kdr (GPa) 38.3 13.1 7.04

α 0.336 0.687 0.765

φ 0.008 0.033 0.052
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Figure 1: For a glassy porous material having bulk modulus Kdr = 18.52 GPa and shear
modulus Gdr = 13.89 GPa, the locus of points z = Reiθ [see equation (38)] having constant
energy U = 900 GPa, when the linear combination of pure compression and pure uniaxial shear
is interpreted as strain field applied to the stiffness matrix (solid black line). The plot is in the
complex z-plane, with the inverse of the corresponding expression for the compliance energy
superposed for comparison (dashed blue line). Red circles at the two points of intersection
correspond to the two eigenvalues/eigenvectors of the system of equations. The ellipse (solid
black line) in this plane corresponds to the more complex curve in Figure 2. The two rectangles
illustrate the inverse of the product formula (32) derived and used in the text. The shapes of
these rectangles are very similar, but not identical; however, their areas are identical.
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Figure 2: Same parameters as Figure 1, but the linear combination of pure compression and pure
uniaxial shear is interpreted as a stress field and is applied to the compliance matrix (dashed
blue line). The plot is again in the complex z-plane, with the inverse of the corresponding
expression for the stiffness energy superposed for comparison (solid black line). Red circles at
the two points of intersection correspond to the two eigenvalues/eigenvectors of the system of
equations. The ellipse (dashed blue line here) corresponds to the more complex curve in Figure
1.
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SIERRA WHITE GRANITE

Figure 3: Same as Figure 1 for Sierra White Granite using the parameters from the Table.

22



−2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Normalized Compressional Stress

N
or

m
al

iz
ed

 U
ni

ax
ia

l S
he

ar
 S

tr
es

s

SIERRA WHITE GRANITE

Figure 4: Same as Figure 2 for Sierra White Granite using the parameters from the Table.
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Figure 5: Same as Figure 1 for Schuler-Cotton Valley Sandstone using the parameters from the
Table.
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Figure 6: Same as Figure 2 for Schuler-Cotton Valley Sandstone using the parameters from the
Table.

25



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Normalized Compressional Strain

N
or

m
al

iz
ed

 U
ni

ax
ia

l S
he

ar
 S

tr
ai

n

SPIRIT RIVER SANDSTONE

Figure 7: Same as Figure 1 for Spirit River Sandstone using the parameters from the Table.
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Figure 8: Same as Figure 2 for Spirit River Sandstone using the parameters from the Table.
The two rectangles illustrate the product formula (32) derived and used in the text. The shapes
of these rectangles are very similar, but not identical; however, their areas are identical.

27


